
Microcontrollers
An introduction to microcontrollers through the arduino nano

Picking the right tool for the job

● Embedded system: An electronic system consisting of inputs and outputs that
performs a specific role in a larger device

● Useful in measurement devices, tools and other stand alone devices
● Different types of electronic devices used

○ Circuitry
○ FPGA
○ Microcontroller
○ Single Board Computer

● Often combined in a single system if different functionalities needed

Circuitry

● Mostly Used for analog signals
● Nanosecond response times
● Very difficult to change
● Useful when interfacing with other

devices

Field Programmable Gate Array (FPGA)

● Interface analog and digital
● Nanosecond response times
● Very high barrier to entry (cost)
● Easier to change

Microcontroller

● Interface analog and digital
● Microsecond response times
● Low barrier to entry
● Easily changeable (programmable)

Single Board Computer

● Most often only digital
● Millisecond response times
● Uses operating system
● Often used for higher level systems

(servers, monitor displays, cameras)

Spectrum of Microcontrollers

Attiny85
● 5 I/O
● 3.3-5V
● 16Mhz
● 8k Flash
● 0 Serial
● $1.50

Arduino Nano
● 22 I/O
● 5V
● 16Mhz
● 32k Flash
● 1 Serial
● $5.49

Arduino Mega
● 54 I/O
● 5V
● 16Mhz
● 256k Flash
● 4 Serial
● $21.99

Teensyduino 4.1
● 55 I/O
● 3.3V
● 600Mhz
● 8M Flash
● 8 Serial
● $31.50

Anatomy of the Arduino Nano

● Pinout tells what each
pin does and how to
access them

● Pins can have multiple
functions based on how
they are set up

● Peripherals interface
outside data with the
processor inside

● Information on
Programming

Components on a
Nano

● USB Port
● Atmega328p
● 16MHz Crystal
● Reset Button
● 4 LEDs

○ Pin 13 LED
○ Power
○ Serial Transmit
○ Serial Receive

Digital I/O Pins

● All Pins labeled [D#] can be used as digital I/O
● Converts between a digital voltage on the pins (0V or 5V) and a value in the

program
○ HIGH=true=1 ⇔ 5V
○ LOW=false=0 ⇔ 0V
○ Essentially rounds up or down if the voltage in between

● There is an onboard LED connected to [D13] that will light up if it is set to HIGH

Digital I/O Pins

● Must be setup before use using pinmode function
● Then read from or written to based on how it was set up

○ Set pinmode to OUTPUT to write 0V or 5V to a pin
○ Set to INPUT to read voltage as boolean
○ INPUT_PULLUP is a special mode that attaches an internal pullup resistor,

helpful for reading buttons and such

Analog Pins

● Analog Pins labeled as [A#]
● Analog pins read in the voltage on a pin

as an integer from 0-1023
○ 0V ⇔ 0
○ 2.5V ⇔ 511
○ 5V ⇔ 1023

● Helpful for using potentiometers as
knobs, as it gives a measure of how
turned it is

How to Upload Programs

● To start you must tell Arduino IDE what type of microcontroller you are using so it
can import the known data and functions that apply

● Click on select another board and port and then choose “Arduino Nano” and
whatever COMM port that comes up

How to Upload Programs

● Once the board is selected and you are ready to upload your program, click on the
arrow in the top left to upload to the board

PWM Pins

● PWM (Pulse Width Modulation) labeled as [~D#]
● PWM is a method of approximating an analog

signal by generating a rectangular wave with a
variable “duty cycle” (percent of the wave that is
HIGH vs LOW)

● Useful for dimming an LED
○ Duty cycle roughly represents how bright the

LED is

PWM Pins

● This can approximate writing an analog
value since it will average to an analog
voltage
○ This is written to using the same scale

as reading an analog voltage
● Use with tone function to play notes from a

buzzer

Timing

● delay() is used to stop the program and wait
for an amount of milliseconds
○ Delay is a blocking function so no code

will execute until it has waited the
specified time

● millis() and micros() reference the timer and
return how long the program has been
running
○ Can use similarly to delay but without

blocking

Interrupts

● Interrupts allow you to run a function on the rising or falling edge when a pin
changes state
○ Only pins D0 and D1 have this on arduino nano

● These are used for the best response times
● Can be very tricky so these are beyond the scope of this

Serial Communication

● Most often used to communicate to the computer over the USB port
● Often used for debugging

○ Print the text to the Serial monitor in arduino IDE for easy debugging
● This also writes to pin D0 and D1 for communication to other devices easier

I2C and SPI

● The nano includes two other communication protocols I2C and SPI
● Both are often used to connect extra peripherals like sensors, displays, or other

various output devices
● Most often used bundled into another library
● I2C (integrated integrated circuit)

○ Uses pins A4 and A5 for communication
○ Uses <Wire.h> library

● SPI (Serial Peripheral Interface)
○ Uses Pins D11, D12, D13 for communication
○ Uses the <SPI.h> library

EEPROM

● The EEPROM can store data even
when powered off

● Slow to write and with only 1024
Bytes of storage

● Most often used for user settings
and such

● Easiest to use a library to access

Anatomy of an
Arduino Program

How the code works

Libraries

● Very first part of the code imports libraries
● These allow you to use code other people

have made
● Must have the libraries installed through the

library manager first

Variables

● Written in C so variables are statically typed
○ Int, bool, float, array, and String most often used types

● Global variables often placed before the setup portion
○ Variables only active in the scope they are defined

● Usually comes after any library imports but before the setup function

Setup

● This code is run once upon starting the program
● This is where you usually initialize anything used in the program including:

○ Pin Modes and their starting condition
○ The Serial port for communication
○ Any objects used

● All code inside the setup function

Loop

● The main part of the program that is looped
constantly once started

● This is the meat of the program where you interact
with things and perform logic

● All code must be inside the loop function

Functions

● After the Loop is where functions are usually defined
● The type at the beginning defines the output of the function

○ Void gives no function output
○ “return [value]” to get an output

How Memory Works on a Nano

● Microcontrollers have limited memory for both programs and variables on board
○ Flash memory hold the instructions that define the program and is limited to

30720 bytes on a nano
○ RAM holds the data for any variables used in the program and is limited to

2048 bytes on a nano
○ EEPROM is not part of the running program so it is a peripheral part of the

system

Example Programs!

● Under Files tab with example
programs

● Very useful if you get stuck, and
very well documented usually

Now Build Your Own!

● Chasing Lights with controllable frequency
● Stacker style hit the LED in the middle
● Potentiometer controlled dimmable LED
● Whack a mole style game
● Simon says/Pattern repetition
● Buzzer Piano

